1 a
$$4(x-2)=60$$

$$4x - 8 = 60$$

$$4x = 60 + 8$$

$$= 68$$

$$x = 17$$

b The length of the square is
$$\frac{2x+7}{4}$$
.

$$\left(\frac{2x+7}{4}\right)^2=49$$

$$\frac{2x+7}{4}=7$$

$$2x + 7 = 7 \times 4 = 28$$

$$2x = 28 - 7 = 21$$

$$x = 10.5$$

$$x-5=2(12-x)$$

$$x - 5 = 24 - 2x$$

$$x + 2x = 24 + 5$$

$$3x = 29$$

$$x=rac{29}{3}$$

$$y=2((2x+1)+(x-3))$$

$$=2(2x+1+x-3)$$

$$=2(3x-2)$$

$$= 6x - 4$$

e
$$Q=np$$

$${f f}$$
 If a 10% service charge is added, the total price will be multiplied by 110%, or 1.1.

$$R = 1.1 pS$$

g Using the fact that there are 12 lots of 5 min in an hour
$$(60 \div 12 = 5)$$
,

$$\frac{60n}{5} = 2400$$

$$\mathbf{h} \quad a = \text{circumference } \times \frac{60}{360}$$

$$=2\pi(x+3)\times\frac{60}{360}$$

$$=2\pi(x+3) imesrac{1}{6}$$

$$=\frac{\pi}{3}(x+3)$$

2 Let the value of Bronwyn's sales in the first week be \$s.

$$s + (s + 500) + (s + 1000)$$

$$+ (s + 1500) + (s + 2000)$$

$$= 17500$$

$$5s + 5000 = 17500$$

$$5s = 12500$$

$$s = 2500$$

The value of her first week's sales is \$2500.

$$65d + 26h = 598$$
$$d + h = 11$$

Multiply the second equation by ${f 26}$ (the smaller number).

$$65d + 26h = 598$$

$$26d + 26h = 286$$

$$(1) - (2)$$
:

$$39d = 312$$
 $d = \frac{312}{39} = 8$

$$h + 8 = 11$$

$$h = 3$$

Eight dresses and three handbags.

4 Let the courtyard's width be *w* metres.

$$3w + w + 3w + w = 67$$

 $8w = 67$
 $w = 8.375$

The width is 8.375 m.

The length = $3 \times 8.375 = 25.125 \text{ m}$.

Let p be the full price of a case of wine. The merchant will pay 60%~(0.6) on the 25 discounted cases.

$$25p + 25 \times 0.6p = 2260$$

 $25p + 15p = 2260$
 $40p = 2260$
 $p = 56.5$

The full price of a case is \$56.50.

Let x be the number of houses with an \$11 500 commission and y be the number of houses with a \$13 000 commission.

We only need to find x.

$$x + y = 22$$

$$11\ 500x + 13\ 000y = 272\ 500$$

To simplify the second equation, divide both sides by 500.

$$23x + 26y = 545$$

Using the substitution method:

$$23x + 26y = 545$$
 $y = 22 - x$
 $23x + 26(22 - x) = 545$
 $23x + 572 - 26x = 545$
 $-3x = 545 - 572$
 $= -27$
 $x = 9$

He sells nine houses with an \$11 500 commission.

It is easiest to let the third boy have m marbles, in which case the second boy will have 2m marbles and the first boy will have 2m-14.

$$(2m-14) + 2m + m = 71$$

 $5m - 14 = 71$
 $5m = 85$
 $m = 17$

The first boy has 20 marbles, the second boy has 34 and the third boy has 17 marbles, for a total of 71.

8 Let Belinda's score be b.

Annie's score will be 110% of Belinda's or 1.1b.

Cassie's will be 60% of their combined scores:

$$0.6(1.1b+b) = 0.6 \times 2.1b = 1.26b$$
 $1.1b+b+1.26b = 504$
 $3.36b = 504$
 $b = \frac{5.04}{3.36}$
 $= 150$

Belinda scores 150

Annie scores $1.1 \times 150 = 165$

Cassie scores $0.6 \times (150 + 165) = 189$

Let r km/h be the speed Kim can run. Her cycling speed will be (r+30) km/h. Her time cycling will be $48+48 \div 3 = 64 \text{ min}$. Converting the times to hours $(\div 60)$ and using distance = speed \times time gives the following equation:

$$r imes rac{48}{60} + (r+30) imes rac{64}{60} = 60 \ 48r + 64(r+30) = 60 imes 60 \ 48r + 64r + 1920 = 3600 \ 112r + 1920 = 3600 \ 112r = 1680 \ r = rac{1680}{112} = 15$$

She can run at 15 km/h

10 Let $c \mathbf{g}$ be the mass of a carbon atom and $x \mathbf{g}$ be the mass of an oxygen atom.

(o is too confusing a symbol to use)

$$2c + 6x = 2.45 imes 10^{-22} \ x = rac{c}{3}$$

Use substitution.

$$2c + 6 \times \frac{c}{3} = 2.45 \times 10^{-22}$$

$$2c + 2c = 2.45 \times 10^{-22}$$

$$4c = 2.45 \times 10^{-22}$$

$$c = \frac{2.45 \times 10^{-22}}{4}$$

$$= 6.125 \times 10^{-23}$$

$$x = \frac{c}{3}$$

$$= \frac{6.125 \times 10^{-23}}{3}$$

$$\approx 2.04 \times 10^{-23}$$

The mass of an oxygen atom is $2.04\times 10^{-23}~\text{g}.$

11 Let
$$x$$
 be the number of pearls. x , x , x , x

$$rac{x}{6} + rac{x}{3} + rac{x}{5} + 9 = x$$
 $rac{5x + 10x + 6x}{30} + 9 = x$
 $21x + 270 = 30x$
 $7x + 90 = 10x$
 $3x = 90$
 $x = 30$

There are 30 pearls.

12 Let the oldest receive \$x.

The middle child receives (x-12).

The youngest child receives $\left\{ \left(\frac{x-12}{3} \right) \right\}$

$$x + x - 12 + \frac{x - 12}{3} = 96$$
 $2x - 12 + \frac{x - 12}{3} = 96$
 $2x - 12 + \frac{x}{3} = 100$
 $6x - 36 + x = 300$
 $7x = 336$

Oldest \$48, Middle \$35, Youngest \$12

13 Let S be the sum of her marks on the first four tests.

x = 48

Then
$$\frac{S}{4} = 88$$

$$\therefore S = 352$$

Let x be her mark on the fifth test.

$$\frac{S+x}{5}=90$$

$$352 + x = 450$$

$$x = 98$$

Her mark on the fifth test has to be 98%

14 Let *N* be the number of students in the class.

0.72N students have black hair

After 5 leave the class there are 0.72N - 5 students with black hair.

There are now N-5 students in the class.

Hence

$$\frac{0.72N - 5}{N - 5} = 0.65$$

$$\therefore 0.72N - 5 = 0.65(N - 5)$$

$$\therefore 0.72N = 0.65N + 1.75$$

$$\therefore 0.07N = 1.75$$

$$7N = 175$$

$$N = 25$$

There were originally 25 students

15 Amount of water in tank A at time t minutes = 100 - 2t

Amount of water in tank B at time t minutes = 120 - 3t

$$100 - 2t = 120 - 3t$$
$$t = 20$$

After 20 minutes the amount of water in the tanks will be the same.

16 Height of candle A at
$$t$$
 minutes $= 10 - 5t$ Height of candle B at t minutes $= 8 - 2t$

a
$$10-5t=8-2t$$
 $3t=2$ $t=rac{2}{3}$

... equal after 40 minutes.

$$\begin{array}{ccc} \mathbf{b} & 10-5t = \frac{1}{2}(8-2t) \\ & 10-5t = 4-t \\ & 4t = 6 \\ & t = \frac{3}{2} \end{array}$$

: half the height after 90 minutes.

c
$$10-5t=8-2t+1$$

 $10-5t=9-2t$
 $3t=1$
 $t=\frac{1}{3}$

... one centimetre more after 20 minutes.

17 Let t be the time the motorist drove at $100 \mathrm{km/h}$

$$100t + 90(rac{10}{3} - t) = 320$$
 $100t + 300 - 90t = 320$
 $10t = 20$
 $t = 2$

Therefore the motorist travelled $200 \; km$ at $100 \; km/h$

18 Let v km/h be Jarmila's usual speed

Therefore distance travelled =
$$\frac{14v}{3}$$
 km

$$v+3$$
 is the new speed and it takes $\frac{13}{3}$ hours.

$$\frac{13}{3}(v+3) = \frac{14v}{3}$$

$$13(v+3) = 14v$$

$$v = 39$$

Her usual speed is 39 km/h